A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency.

نویسندگان

  • Kevin E Breitkreuz
  • Wendy L Allan
  • Owen R Van Cauwenberghe
  • Cornelis Jakobs
  • Driss Talibi
  • Bruno Andre
  • Barry J Shelp
چکیده

In plants, gamma-aminobutyrate (GABA), a non-protein amino acid, accumulates rapidly in response to a variety of abiotic stresses such as oxygen deficiency. Under normoxia, GABA is catabolized to succinic semialdehyde and then to succinate with the latter reaction being catalyzed by succinic semialdehyde dehydrogenase (SSADH). Complementation of an SSADH-deficient yeast mutant with an Arabidopsis cDNA library enabled the identification of a novel cDNA (designated as AtGH-BDH for Arabidopsis thaliana gamma-hydroxybutyrate dehydrogenase), which encodes a 289-amino acid polypeptide containing an NADP-binding domain. Constitutive expression of AtGHBDH in the mutant yeast enabled growth on 20 mm GABA and significantly enhanced the cellular concentrations of gamma-hydroxybutyrate, the product of the GHDBH reaction. These data confirm that the cDNA encodes a polypeptide with GHBDH activity. Arabidopsis plants subjected to flooding-induced oxygen deficiency for up to 4 h possessed elevated concentrations of gamma-hydroxybutyrate as well as GABA and alanine. RNA expression analysis revealed that GHBDH transcription was not up-regulated by oxygen deficiency. These findings suggest that GHBDH activity is regulated by the supply of succinic semialdehyde or by redox balance. It is proposed that GHBDH and SSADH activities in plants are regulated in a complementary fashion and that GHBDH and gamma-hydroxybutyrate function in oxidative stress tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel -Hydroxybutyrate Dehydrogenase IDENTIFICATION AND EXPRESSION OF AN ARABIDOPSIS cDNA AND POTENTIAL ROLE UNDER OXYGEN DEFICIENCY*

From the ‡Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada, the **Department of Clinical Chemistry and Pediatrics, “Vrije Universiteit” Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands, and the ‡‡Laboratoire de Physiologie Cellulaire et de Genetiques des Levures, Université Libre de Bruxelles, Campus Plaine CP 244, Boulevard du Triompe,...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Identification of novel genes expressed in Brassica napus during leaf senescence and in response to oxidative stress

Senescence is a genetically regulated oxidative process that involves a general degradation of cellular structures and enzymes and the mobilization of the products of degradation to other parts of the plant. The cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism) analysis has been used under stringent PCR conditions afforded by ligation of adapters to restriction fragments, and the use of s...

متن کامل

γ-Hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms

Enzymes that reduce the aldehyde chemical grouping (i.e. H-C=O) to its corresponding alcohol are probably crucial in maintaining plant health during stress. Succinic semialdehyde (SSA) is a mitochondrially-generated intermediate in the metabolism of gamma-aminobutyrate (GABA), which accumulates in response to a variety of biotic and abiotic stresses. SSA can be reduced to gamma-hydroxybutyrate ...

متن کامل

Identification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions

Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 42  شماره 

صفحات  -

تاریخ انتشار 2003